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ABSTRACT 

Investment in the stock market requires a delicate balance between profitability and risk management, with risk aversion 

playing a vital role. This study explores the ARIMA forecasting method to predict S&P BSE SENSEX returns, providing 

valuable insights for investors and financial experts. Using a 3-year dataset, the ARIMA (3,1,1) model was identified as the 

optimal choice. Diagnostic checks confirmed its reliability, ensuring unbiased and accurate forecasts. In static forecasting, 

the model exhibited high-quality performance with low error rates. Dynamic forecasting further revealed precision in 

predicting future values. While the ARIMA model aids in making informed financial decisions, it's crucial to acknowledge 

its limitations. This research contributes to the understanding of stock market forecasting methodologies, benefiting 

investors and analysts in navigating this dynamic landscape. 
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I. INTRODUCTION 
 

Investment in the stock market necessitates the achievement of an optimal equilibrium between profitability and 

risk. To accomplish this objective, a comprehensive understanding of market dynamics, particularly in the realm of risk 

prediction and management, is indispensable. The notion of risk aversion is of great significance to various stakeholders, 

including investors, policymakers, researchers, and financial experts, due to its impact on portfolio diversification and 

market stability. 

The interplay between investment returns and risks exerts a significant influence on decision-making processes. 

Successful investors strive to transform each action into substantial returns, relying on effective and rational strategies, as 

underscored by Kaufman (1995). Empirical research offers evidence supporting a positive correlation between stock 

markets and economic growth (Guptha & Rao, 2018; Kim et al., 2011; Mallikarjuna & Rao, 2019), which underscores the 

crucial role of investment decisions in attaining desired financial outcomes. 

Nevertheless, stock markets are inherently characterized by their dynamic, intricate, and volatile nature. 

Predicting stock prices and returns in such an environment poses a formidable challenge. In this context, a delve into the 

realm of ARIMA (Auto-Regressive Integrated Moving Average) forecasting, a robust analytical tool that offers valuable 

insights into the future movements of the S&P BSE SENSEX, thereby providing assistance to investors as they navigate 

the ever-changing landscape of the stock market. 

 

II. LITERATURE REVIEW 
 

In a recent study conducted by Neely et al. (2014), the authors emphasized the significance of employing 

technical indicators to forecast stock returns, illustrating their relevance from both an economic and statistical perspective. 

These findings align with a wider body of research that has investigated the predictability of stock returns, as demonstrated 

by studies conducted Zhu & Zhu (2013) by and Jiahan & Ilias, (2017). 

 Chari & Henry (2004) provided valuable insights into the reduction of systematic risk in stock market 

liberalizations. They argued that as the global market assumes the role of the primary source of systematic risk, these 

liberalizations introduce an exogenous change that allows for the testing of theoretical predictions. 

 

III. OBJECTIVE 
 

The primary aim of this research is to evaluate the effectiveness of the ARIMA model in forecasting returns for 

the S&P BSE SENSEX. The study also aims to provide valuable guidance to investors, financial analysts, and 

policymakers. This research strives to empower stakeholders with practical insights for making informed decisions in the 

financial markets. Ultimately, the findings of this research aim to benefit individuals and entities engaged in stock market 

analysis and investment strategies. 
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IV. DATA AND RESEARCH METHODOLOGY 

 

In the ARIMA, also known as the Box-Jenkins Approach, four stages are sequentially pursued: identification, 

estimation, diagnostic checks, and forecasting. In this investigation, the data have been gathered from the official BSE 

website, encompassing a time span of 2 years, 11 months and 4 weeks, comprising a total of 744 trading day observations. 

This study is focused on analysing the closing value of the S&P BSE SENSEX. This time series analysis executes with the 

help of EViews software version 10. 

 

1. Identification 

When constructing an ARIMA model, the first step is to evaluate the stationarity of the data using informal 

techniques like graphs and correlograms, as well as formal tests like ADF and PP tests. If non-stationarity is 

detected, data transformation is used to remove underlying trend patterns. Once stationarity is achieved, potential 

models are identified using ACF and PACF plots. The PACF helps select the AR component, while the ACF 

guides the selection of the MA component. Model orders can be inferred from values exceeding the confidence 

band on the plot. However, it is important to choose a parsimonious model to avoid unnecessary complexity. 

 

2. Estimation 

To identify potential ARIMA model candidates, evaluate six key criteria to determine the most suitable model: 

significant coefficients, SIGMASQ, adjusted R
2
, Akaike Information Criterion (AIC), Schwartz Information 

Criterion (SIC), and Hannan-Quinn Criterion (HQC). These considerations guide us in selecting the most 

appropriate ARIMA model. 

 

3. Diagnostic Check 

In the diagnostic phase of the Box-Jenkins Method, focus lies on three crucial aspects: 

Firstly, ensure the absence of autocorrelation in the residuals of the chosen model. This is accomplished by 

examining the Ljung-Box Q-statistic. 

Secondly, it is of utmost importance to check the stationarity of the residuals in the time series regression. Non-

stationary residuals imply an unreliable model and the potential for misinterpretation of results. 

Thirdly, to ascertain the stability of the ARIMA model, consider two things: 

a) Verify if the estimated model exhibits covariance stationarity, which is indicated by the inverse AR roots 

residing within the unit circle. 

b) Ensuring that the estimated process is invertible by ensuring that the inverse MA roots lie inside the unit 

circle. 

If these diagnostic assumptions are not met then must seek a more appropriate model by engaging in overfitting. 

Overfitting involves adding parameters to the AR or MA components of the model. 

 

4. Forecasting 

With the completion of model diagnostics and the subsequent confirmation of the model, the appropriate course of 

action is now to employ it for the purpose of forecasting. 

 

V. RESULT AND ANALYSIS 
 

1. Identification 

Initially plotting the data, it is observed that the time series plot exhibits an overall positive trend (Figure 1). 

 

Figure 1: Graphical representation of close value of S&P BSE SENSEX 

 

 
Source: Author’s own computation 
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Also, it can be observed from Figure 2 that the plot of ACF exhibits a gradual and linear decay, thereby indicating 

the non-stationarity of the series at level. 

 

Figure 2: Correlogram of close value of S&P BSE SENSEX 

 
Source: Author’s own computation 

 

In light of this, the unit root tests are performed. The hypothesis for testing the stationarity of S&P BSE SENSEX 

series using the ADF and PP tests can be stated as follows: 

H0: The null hypothesis in a unit root test assumes that the time series has a unit root, indicating it is not stationary. 

H1: The alternative hypothesis suggests that the time series does not have a unit root, implying it is stationary. 

 

Table 1: Stationary of the data set 

Unit Root Test at Level 

Test Equation ADF (p-value) PP (p-value) 

None 0.9900 0.9885 

Intercept 0.0363 0.0385 

Trend and Intercept 0.0485 0.0473 

Source: Author’s own computation 

 

Based on the information presented in table 1, it can be observed that the p-value exceeds the critical threshold of 

0.05 for both tests conducted in the test equation labelled as "None". Consequently, the null hypothesis is deemed 

acceptable, thus signifying that the data exhibits non-stationarity at the given level. In order to address this non-stationarity 

concern, it is recommended to initially transform the series into logarithmic values and subsequently apply differencing 

(DLCLOSE). Henceforth, it is appropriate to proceed with the estimation of a model. 

Figure 3 indicates that the series achieves weak stationarity. 

 

Figure 3: Graphical representation of DCLOSE of S&P BSE SENSEX Returns 
 

 
 

Source: Author’s own computation 

 

The ADF test and the PP test are employed in order to ascertain the stationarity of this log-differentiated series. 
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Table 2: Stationary of the data set 

Unit Root Test at 1
st
 Difference 

Test Equation ADF (p-value) PP (p-value) 

None 0.0000 0.0000 

Intercept 0.0000 0.0000 

Trend and Intercept 0.0000 0.0000 

Source: Author’s own computation 

 

Now let's examine the correlogram of the log-differentiated series in order to ascertain the values of p and q for 

possible models. In this regard, the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) provide 

insights into the potential models. 

 

Figure 2: Correlogram of close value of log-differentiated S&P BSE SENSEX 

 
Source: Author’s own computation 

 

After observing the confidence band on the sides. The values that surpass the band indicate a plausible sequence. 

From the above correlogram, it finds the below parsimony models: 

p= (1,2,3) 

d= (1) 

q= (1,3) 

So, Possible Models are: 

ARIMA= (1,1,1), (2,1,1), (3,1,1), (1,1,3), (2,1,3) and, (3,1,3). 

 

2. Estimation 

In the process of selecting the most suitable ARIMA model from a set of candidates, significant coefficients with 

preferable p-values of less than 0.05 for both AR and MA terms are sought, ensuring that the included variables exhibit 

statistical significance. Additionally, lower SIGMASQ is desired, indicating a preference for models with lower volatility. 

The goal is to maximize the Adjusted R
2
, indicating a better fit of the model to the data. Furthermore, the AIC, SIC, and 

HQC are minimized to identify the most appropriate model. These criteria collectively guide the selection of the ARIMA 

model that best suits the analysis. 

 

Table 3: Evolution of the Best Fit Model 

Criteria    Model   Best fit 

Model ARMA 

(1,1) 

ARMA 

(2,1) 

ARMA (3,1) ARMA 

(1,3) 

ARMA 

(2,3) 

ARMA 

(3,3) 

AR p-value 0.7270 0.1930 0.0314 0.0186 0.2198 0.5704 (3,1) and 

(1,3) MA p-value 0.6092 0.0202 0.0104 0.0213 0.0344 0.4473 

SIGMASQ - - 8.95479 8.95646 - - (3,1) 

Adj. R
2
 - - 0.005387 0.005202 - - (3,1) 

AIC - - -6.472067 -6.471880 - - (3,1) 

SIC - - -6.447245 -6.447058 - - (3,1) 

HQC - - -6.462498 -6.462311 - - (3,1) 

Source: Author’s own computation 

 

The ARIMA (3,1,1) model has been identified as the optimal choice, with further details provided in Table 4. 
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Table 4: ARIMA (3,1,1) model 

     
Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000714 0.000367 1.943733 0.0523 

AR(3) -0.067677 0.031389 -2.156476 0.0314 

MA(1) 0.073156 0.028486 2.568113 0.0104 

SIGMASQ 8.95479 3.178536 28.17270 0.0000 

     
     R-squared 0.009408     Mean dependent var 0.000715 

Adjusted R-squared 0.005387     S.D. dependent var 0.009514 

S.E. of regression 0.009489     Akaike info criterion -6.472067 

Sum squared resid 0.066534     Schwarz criterion -6.447245 

Log likelihood 2408.373     Hannan-Quinn criter. -6.462498 

F-statistic 2.339633     Durbin-Watson stat 2.004782 

Prob(F-statistic) 0.072201    

Source: Author’s own computation 

 

The generalize ARIMA (3,1,1) model written as, 

ΔYt=c+ϕ1Yt−1+ϕ2Yt−2+ ϕ2Yt−3-ɑUt-1 +Ut 1 

 

 ΔYt is the value of the differentiated series at time t. 

 c is a constant (intercept). 

 ϕ1, ϕ2 and ϕ3 are the autoregressive coefficients corresponding to the lagged values Yt−1, Yt−2 and Yt−3 respectively. 

 ɑ is the moving average (MA) coefficient. 

 Ut is a white noise error term at time t. 

 

Applying the ARIMA (3,1,1) coefficients from Table 4, the model takes the following form: 

DLCLOSEt=0.000714-0.067677Yt−3- 0.073156 Ut-1 2 

 

 

3. Diagnostic Check 
After selecting the best model, it is important to ensure it meets criteria for accurate forecasting. Two important 

elements come into focus during the diagnostic phase of the Box-Jenkins Method: 

 

I. Absence of Autocorrelation 
To validate that the model's residuals exhibit the characteristics of white noise, free from any discernible patterns 

of autocorrelation, this is tested with the help of Ljung-Box Q-statistic. 

H0: The data demonstrate independent distribution. 

H1: The data do not display independent distribution. 

 

Figure 5: Correlogram of residuals 

 
Source: Author’s own computation 

 

Figure 5 shows a correlogram of residuals, with small values within the 95% confidence interval. This indicates 

that the residuals are significant and supports the null hypothesis. The residuals are independent, indicating no 

autocorrelation. This supports the use of the ARIMA (3,1,1) model and suggests the error terms exhibit white noise 

characteristics. 
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II. Stationary Check of the Residuals 
Evaluating the stationarity of residuals in a time series regression model is crucial for confirming the model's 

credibility and the dependability of its results. When residuals exhibit non-stationarity, it indicates potential issues with the 

model's validity and raises the risk of misinterpreting the findings. 

H0: The null hypothesis in a unit root test suggests the presence of a unit root in the time series, indicating non-stationarity.  

H1: The alternative hypothesis states that there is no unit root in the time series, indicating stationarity. 

 

Table 5: Stationary of the Residuals 

Unit Root Test at Level 

Test Equation ADF (p-value) PP (p-value) 

None 0.0000 0.0000 

Intercept 0.0000 0.0000 

Trend and Intercept 0.0000 0.0000 

Source: Author’s own computation 

 

Table 5 shows that all values are lower than the significance level of 0.05, resulting in the rejection of H0. 

Consequently, all residuals exhibit stationarity at the level, ensuring the model's validity, forecast reliability, and statistical 

inference accuracy. 

 

III. Stability Check 

In assessing the stability condition within the ARIMA model, two critical aspects are examined: 

a) Verification of covariance stationarity: The roots of the inverse AR components should reside within the unit circle. 

b) Confirmation of invertibility: The roots of the inverse MA components should also remain inside the unit circle. 

 

Figure 6: Inverse AR/MA Roots 

 
Source: Author’s own computation 

 

As depicted in the above figure, it is evident that all the inverse roots are contained within the unit circle. The 

ARIMA (3,1,1) model fulfills the stability conditions, and the error terms exhibit characteristics of white noise. This 

positions the analysis in a favorable position for forecasting future S&P BSE SENSEX returns values. 

 

4. Forecasting 

 

I) Static Forecasting within the Sample 

The ARIMA (3,1,1) model has been used to forecast the closing price returns of S&P BSE SENSEX spanning 

from October 01, 2020, to September 29, 2023. Figure 7 shows the forecast and actual values, with a confidence interval. 

The forecast performance metrics are also provided. The model is of high quality, with a remarkably low Theil coefficient 

(0.000433). Figure 7 also shows a strong alignment between actual and forecasted values. 

An ideal forecast should be unbiased, accurate, and free from random fluctuations. The bias proportion value 

(0.000013) in Figure 7 indicates a positive outcome, suggesting highly accurate forecasts without systematic bias. 

The majority of the variability in the time series data is accounted for by the model's forecasts, as indicated by the 

variance proportion (0.0003399) in Figure 7. The covariance proportion (0.996508) is also high, reflecting satisfactory 

performance. 

With satisfactory bias and variance proportion values, the model is suitable for forecasting. The Mean Absolute 

Percentage Error (MAPE) of 0.06% indicates a level of accuracy commonly considered acceptable in practical scenarios. 
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Figure 7: Actual and Forecast of the S&P BSE SENSEX form 10/01/2020 to 9/29/2023 

 
Source: Author’s own computation 

 

II) Dynamic Forecasting Out of the Sample 

The process of dynamic forecasting begins by determining the period for future predictions. A 29-day horizon was 

chosen for this analysis. The ARIMA (3,1,1) model is used to generate the forecasts, along with 95% confidence intervals. 

Figure 8 visually represents the dynamic forecasts by overlaying actual historical values with forecasted values. The 

shaded region within the plot represents the 95% confidence interval. This approach allows for assessing the model's 

performance and understanding forecasted trends and variations. The data and forecast information from September 29, 

2023 to October 28, 2023 are presented in ANNEXURE A1, utilising the ARIMA model (3,1,1). 

 

Figure 8: Dynamic Forecast of the S&P BSE SENSEX form 9/29/2023 to 10/28/2023 

 
Source: Author own computation 

 

The analysis began with a 29-day horizon for future predictions using an ARIMA model. It included 95% 

confidence intervals to account for uncertainty. Figure 8 shows a visual representation of the forecasts, with the shaded 

region indicating the confidence interval. 

The RMSE and MAE metrics indicate the accuracy of the forecasts, with minimal errors. The MAPE shows a 

relative error of 0.043%, demonstrating precision. The Theil Inequality Coefficient is impressively low, indicating high-

quality performance. 

 

VI. CONCLUSION 
 

For stock market forecasting, the ARIMA methodology, also known as Box-Jenkins, is widely employed. It 

enables traders, investors, portfolio managers, and financial institutions to build robust financial models, effectively 

manage risks, and make well-informed decisions. For forecasting, a robust ARIMA (3,1,1) model was adopted. This study 

focuses on forecasting S&P BSE SENSEX returns using ARIMA. The diagnostics, stability, and forecasting skills of the 

model were assessed and consistently produced positive results. While ARIMA does not guarantee profits, it does provide 

useful information for decision-making. Other methodologies, like as GARCH models, can be useful for volatility 

modelling and forecasting. 
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ANNEXURE 

 

A1: Dynamic Forecasted value of S&P BSE SENSEX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Date 
Close 

Forecast 

9/29/2023 11.09003 

9/30/2023 11.09062 

10/02/2023 11.09201 

10/03/2023 11.09276 

10/04/2023 11.09349 

10/05/2023 11.09415 

10/06/2023 11.09486 

10/07/2023 11.09558 

10/09/2023 11.0963 

10/10/2023 11.09701 

10/11/2023 11.09772 

10/12/2023 11.09844 

10/13/2023 11.09915 

10/14/2023 11.09986 

10/16/2023 11.10058 

10/17/2023 11.10129 

10/18/2023 11.10201 

10/19/2023 11.10272 

10/20/2023 11.10343 

10/21/2023 11.10415 

10/23/2023 11.10486 

10/24/2023 11.10558 

10/25/2023 11.10629 

10/26/2023 11.107 

10/27/2023 11.10772 

10/28/2023 11.10843 


